Adaptive Experimentation at Scale: Bayesian Algorithms for Flexible Batches

Author(s): Ethan Che, Hongseok Namkoong
Venue: arXiv
Year: 2023

Paper: https://arxiv.org/abs/2303.11582

Abstract

Standard bandit algorithms that assume continual reallocation of measurement effort are challenging to implement due to delayed feedback and infrastructural/organizational difficulties. Motivated by practical instances involving a handful of reallocation epochs in which outcomes are measured in batches, we develop a new adaptive experimentation framework that can flexibly handle any batch size. Our main observation is that normal approximations universal in statistical inference can also guide the design of scalable adaptive designs. By deriving an asymptotic sequential experiment, we formulate a dynamic program that can leverage prior information on average rewards. State transitions of the dynamic program are differentiable with respect to the sampling allocations, allowing the use of gradient-based methods for planning and policy optimization. We propose a simple iterative planning method, Residual Horizon Optimization, which selects sampling allocations by optimizinga planning objective via stochastic gradient-based methods. Our method significantly improves statistical power over standard adaptive policies, even when compared to Bayesian bandit algorithms (e.g., Thompson sampling) that require full distributional knowledge of individual rewards. Overall, we expand the scope of adaptive experimentation to settings which are difficult for standard adaptive policies, including problems with a small number of reallocation epochs, low signal-to-noise ratio, and unknown reward distributions.

Additional information